

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: X

SUB.: MATHS (NCERT BASED)

DATE: 17-09-2020

Theorem 6.8.(Pythagoras Theorem)

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given: - A \triangle ABC in which \angle ABC = 90°. To prove: - AC² = AB² + BC². Construction: - Draw BD \perp AC. Proof: -In \triangle ADB and \triangle ABC, we have $\angle A = \angle A$ (common). \angle ADB = \angle ABC [each equal to 90°]. $\therefore \triangle$ ADB $\sim \triangle$ ABC [By AA-similarity]. \Rightarrow AD/AB = AB/AC. \Rightarrow AB² = AD \times AC(1).

In \triangle BDC and \triangle ABC , we have

 $\angle C = \angle C$ (common).

 $\angle BDC = \angle ABC$ [each equal to 90°].

 $\therefore \triangle BDC \sim \triangle ABC \qquad [By AA-similarity].$

 \Rightarrow DC/BC = BC/AC.

 $\Rightarrow BC^2 = DC \times AC.$ (2).

Add in equation (1) and (2), we get

 $\Rightarrow AB^2 + BC^2 = AD \times AC + DC \times AC .$

 $\Rightarrow AB^2 + BC^2 = AC(AD + DC)$.

 $\Rightarrow AB^2 + BC^2 = AC \times AC .$

$$\therefore AB^2 + BC^2 = AC^2 \qquad \underbrace{\text{Hence Proved}}_{\text{Fouried}}$$

Revse 5 times